Library overview

Note that the stack comments added is the stack while loading the
mentioned source code chapter. Library stack comments, some
library chapters need data in the stack to configure the chapter.
Below is an overview of the used stack comments:

name = String to be parsed from the input stream
ccc<ch> = String to be parsed delimited by the character ‘ch’
a = Address

a b c etc. = Anonymus stack items

ch = ASCII character number
d = Double number

+n = Positive number

n = Signed number

u = Unsighed number

f = Flag(0or-1)

pin = GPIO pin number

i*x j*x = Undefined stack contents

The basic word for using the library are:

CHAPTERS = Show all available code chapters

RUN (ccc --) = Interpret the chapter “ccc” using noForth

NEED (ccc --) = Check if code chapter “ccc” was already
loaded, when not add that chapter to noForth

Tools
Tools function Description
COPYRIGHT Copyright message
VERSION Library version info
UART Switch back to UART interface
usB Switch to USB CDC-interface (if any)
TRY ADD Two pseudonyms for NEED & RUN

Tools function

Description

RESTORE-LIB

Restore library pointers

LOOK

n

Show source code belonging to “name

DISPLAY Pseudonym for LOOK

VIEW Pseudonym for LOOK

OPEN-LIB Open this library

WIPE-LIB Erase this library

CLOSE-LIB Close this library

CHAPTER Add new source chapter to this library
.STACK Show stack comment for CHAPTER if any
ALPHA Show library in alphabatic order
-CHAPTERS Show library in reverse order

NEED(Multi name version of NEED

PIN (pin--) Change ‘pin’ number for S?

LOCK-PIN Disable S? (leave always true)

48MHZ Change clock to 48 MHz

125MHZ Change clock to 125 MHz

132MHZ Change clock to 132 MHz

250MHZ Change clock to 250 MHz

38K4 Change baudrate to 38400 baud

115K2 Change baudrate to 115200 baud
460K8 Change baudrate to 460800 baud

921K6 Change baudrate to 921600 baud

BAUD (u--) Change baudrate to baudrate u from stack
[DATA Inline data structure for colon definitions
-ROT Rotate top item to third on the stack
ROLL Move x-th item on the stack to the top
2TUCK Copy d2 below d1

2ROT Rotate third item to top of the stack
-2ROT Rotate top item to third on the stack

ON OFF Set or clear the cell at ‘addr’

2! Store the double dx at ‘addr’

2@

Read the double dx from ‘addr’

Tools function

Description

0> ‘f’ is true when n is signed greater then zero
ARSHIFT Arithmetic right shift by +n positions

D- Subtract d2 from d1 leaving d3

M+ Add n to d1 leaving d2

DLSHIFT DRSHIFT Double logical left & right shift

SM/REM Symetric division with remainder

2L0G Calculate binary logarithm y of u

CHARS Add character address calculation

ERASE Erase +n bytes from addr

] Nested loop indexes] and K

PAD Scratch pad area of 32 bytes

SOURCE Input source manipulation words

CASE The CASE statement word set

UNUSED Leave free dictionary space

WORD Parse the string delimited by ch leave it at a
[COMPILE] Compile the word behind it always

ABORT" Error message with inline string

[IF]

Interactive control structure word set

FORTH-WORDLIST

Compilation wordlist manipulation

GET-ORDER Manipulate search order word set

SEARCH-WORDLIST Search for wordname in given wordlist id

-TRAILING Cut trailing spaces from a string

.S Non-destructive display of data stack

[DEFINED] Check if a word exist

[UNDEFINED] Check if a word not exist

CRC RP2040 style CRC generator

RANDOM 32-bit pseudo random Marsaglia generator,
including CHOOSE (ul — u2)

THENS Close all open IFs

.BYTE Print byte nhumber in hexadecimal

HEX Print number unsigned in hexadecimal

PCHAR Convert all data to printable characters

Tools function

Description

MANY Redo current input line until a key was hit

STOP? Leave flag when a key was pressed, hold on
a space, abort on Esc.

RECUR For use with for-next, it manipulates the
index using keys from the keyboard

DMP Simple dump routine, needs address only

DUMP Classic Forth dump tool

WORDS Show words in top vocabulary

@NAME Read counted string from a header

>NFA Convert an address to name field address

?TEXT Search for inline text string

?HEAD Check for a valid header at given address

.DATA Print data word as chars and hexadecimal

SEE noForth decompiler

.VOCS Show all present vocabularies

.SHIELDS Show all present shields

TOOLS\ Add basic noForth tool set

LARGE-TOOLS\ Add extended noForth tool set

ALLWORDS 16 times WORDS in noForth using kangaroo
method

MEMMAP Show noForth memory map

.CFG Show noForth configuration

LAST\ Remove code behind the last present shield

-FLY Make all control structures interactive

COMMACODE CM

Build assembler less code definitions

DAS\ Complete RP2040 disassembler
INSPECT\ Universal decompiler/disassembler
ASM\ noForth RP2040 T(humb) assembler
+ASM\ RP2040 assembler extension

PIO\ RP2040 PIO (dis)assembler v2
PIOBASE\ Minimal PIO control wordset v2
-LITERAL Literal compiler, base addr. and offset

Tools function

Description

$VARIABLE String manipulation word set

-TAIL -HEAD Cut characters from a string

BITARRAY Bit array word set, for compact on/off
noting and operators to handle this array

*COPY Copy any bit array to another, etc.

COUNT* Count the bits set in given bit array

*up? Get the bit number of the lowest bit set &
true and clear that bit, otherwise leave false

(? Debugging through run-time stack check

?TASK Check if a task is valid

TASK Add, start & change background tasks

TASKS Multitasker tools wordset

STK Address stack cells of background tasks

LOCK Semaphores, tools for sharing devices

SPINLOCK Add spinlock words MINE? and YOURS

MINE? Add spinlock words MINE? and YOURS

TASKER\ Add complete multitasker wordset

SET-FREQ Set CPU frequency from 12MHz to 400MHz
Note: a clock frequency above 300 MHz
does not work on all RP2040 chips.

TESTER\ Add adapted Hayes test suite

TRACER\ Very basic number tracer with independent
number conversion (.B .DUMP etc.)

IMAGE Generate Intel-Hex from current boot image
It can be converted to a UF2 with a small
Win32Forth program

UNIT Add Ullrich Hoffman’s UNIT structure

MEASURE\ Measure timing of code parts

CDC\ Single USB CDC driver runs in two tasks of
the multitasker

CDCO0\ Dual USB CDC driver that runs in three
tasks of the multitasker. This part runs on
core-0.

CDC1\ Second part of dual CDC driver, that runs on
core-1

HARDFAULT A hardfault handler that gives more details

Hardware

Hardware function

Description

CORE\ Add inter core communication

CORE1\ A blinker running on core-1

COREO A counter running on core-0

CORE1 A counter display progran running on core-1
BUTTON A switch demo running on one core
RESPONSE Inter core demo with the button program
BLINK Simple GPIO25 flashing LED demo

ADC Using the onboard ADC

BOOTKEY? Reuse BOOTSEL switch for Forth input
TEMPERATURE Use the built-in temperature sensor demo

PWM-ON (pin --)

Onboard dual PWM usage example on GPIO
& GPIO + 1

ALARM Using the alarm registers as interval timer
KHZ> Convert wanted spi-clock to divider values
LOOPBACK Loopback mode for spi-0 on/off

SPI\ (rx-pin 0|1 --)

spi-0 or spi-1 driver

I2C\ (clock sda-pin --)

Built-in I2C on all clock speeds

I2C-SLAVE\ (sda-pin --)

I2C slave implementation, needs wanted
SDA pin number on the stack

IO-SLAVE I12C PCF8574 style slave driver

COUNTER I2C slave demo (master code part) set clock
frequency & SDA pin number on the stack

MDMP I2C slave demo (master code part) set clock
frequency & SDA pin humber on the stack

MEM-SLAVE Implements an I2C memory slave, shares a
memory part over the 12C-bus

>PCF8574 PCF8574 driver primitives

RUNNER A few PCF8574 demo drivers

24C02\ Small I2C-eeprom code example

EEPROM An eeprom code example

DEV? Check if a device is present on the I12C-bus

SCAN-I2C An i2c bus scanner

PCF8591\ I2C analog input & output using a PCF8591

Hardware function

Description

LM75\ I2C temperature measuring with LM75
WS2812 Control two WS2812 LEDs separately
WS2812START\ Self starting dual WS2812 PIO driver
WS2812MULTI\ Self starting dual WS2812 PIO driver using
the multitasker
OLED character sets
N Read & compile 16-bit character row
| Read & compile 8-bit character row
'GRAPH Graphic characters of 8x4 pixels
'SMALL Small characters set of 8x5 bits
"THIN A 16x6 thin character set
‘BOLD A 16x8 bold character set
OLED SPI & I2C driver parts
{OLED OLED driver for GPIO16 and SPI-0
OLED-SPI\ Primitive SPI OLED text driver
I2C-OLED\ Primitive I2C OLED text driver
OLED screen control
&CR Add a scrolling display redefining the words
&CR & &PAGE

THIN Output 16x6 thin characters
BOLD Output 16x8 bold characters
SMALL Output 8x5 small characters
GRAPHIC Output 8x4 graphic characters

OLED demo’s need I2C or SPI driver loaded in front of it
SMALL-DEMO Small character scrolling demo
SCROLL-DEMO Thin character scrolling demo
MIXED-DEMO Mixed character size scrolling demo
THIN-DEMO Large thin character size scrolling demo
BOLD-DEMO Large bold character size scrolling demo
GRAPHIC-DEMO Display graphic character set
EGEL-DEMO Moving hedgehog demo

Completely functional SPI and I2C examples for Pico-kit

SPI-OLED-DEMO\

Add all demos for an SPI OLED screen

[2C-OLED-DEMO\

Add all demos for an I2C OLED screen

Hardware function

Description

OLED-APP\ (name --)

Self-starting OLED app, add it to automate
previous demo examples

ST7789\ (pin --)

240 x 280 TFT driver using SPI from pin
onwards (needs 5 pins)

ST7789DEMO\ Add two basic color demo’s
MOVIE\ Movie player for ST7789
WRITEMOV\ Write movie’s to Flash memory

BAMBOE\ (pin #bamboe --)

Parallel output driver with serial input

PIO

PIO function

Description

BIT-TOGGLE1 (sm pio pin --)

Simple but flexible bit toggle

BIT-TOGGLE2 (pin --)

More advanced bit toggle on SMO & PIOO

BIT-TOGGLE3 (pin --)

Idem 2 but with use of side-set & set

IN&OUT1 (pin --)

Use GPIO to activate GPIO+1

IN&OUT2 (pin --)

Toggle GPIO+1 using MOV, only

IN&OUT3 (pin --)

Toggle GPIO+1 using WAIT, & MOV,

IRQ-1 (pin --)

Two communicating programs using IRQ

IRQ-2 (pin --)

Idem 1, but using wrap function

MUSIC-0 (pin --)

Frequency generation using 4 GPIO’s on 4
SM'’s uses clone

ON&OFF-1 (pin --)

Example of PIN? and MOV, toggles GPIO+1

ON&OFF-2 (pin --)

Example of PIN? and MOV, GPIO+1 on/off

ON&OFF-3 (pin --)

Idem 2, example of PIN? WAIT, and MOV,

PWM-1 (sm pio pin --

1000 Hz PWM, range 0 to 100

PWM-2 (sm pio pin --

1000 Hz PWM, range 0 to 200

1000 Hz PWM, range 0 to 400

)
)
PWM-3 (sm pio pin --)
PWM-4 (sm pio pin --)

10000 Hz PWM, range 0 to 400

ROTARY-0 (pin --)

Rotary encoder on GPIO to GPIO+3

ENCODER-DEMO

Encoder demo on GPIO26 to GPIO29

SPI-0 (sm pio clock pin --) SPI I/0 using three GPIO pins, clock in Khz
8 data bits and autopull & autopush

SPI-1 (sm pio clock pin --) SPI I/0 using four GPIO pins, clock in Khz
8 data bits, PULL, and autopush

SPI-2 (sm pio clock pin --) SPI I/0 using four GPIO pins, idem 2 but
slightly different Forth usage

SPI-3 (sm pio clock pin --) SPI I/0 using four GPIO pins, the chip

select is done by the Forth program

SPI-4 (sm pio clock pin --)

SPI out using four GPIO pins

SPI-5

SPI I/0O using GPIO26 to GPIO29

UART-0 115K2 UART output on GPIO26
UART-1 Dual UART output on GPIO26 = 115K2
& GPIO27 = 38K4 using clone
UART-2 115K2 UART output on SM0O and GPIO26 &

input on on SM1 and GPIO27

PIO function

Description

UART-3 460K8 UART TX and RX on GPIO26 &
GPIO27 adding a simple chat function

UART-4 460K8 alternative UART for noForth

UART-5 9600 baud alternative UART for noForth

WS2812-0 (pin --)

Single WS2812 driver at GPIO from stack

WS2812-1 (sm pio pin --)

Single WS2812 driver demo & GPIO25 led
flasher on two state machines

WS2812-2 Multiple WS2812 driver demo on GPIO23 &
GPIO28, on two state machines using clone

WS2812-3 Multiple WS2812 LED on GPIO28 alternative
driver demo, with Forth demo program &
special functions

WS2812-4 Multiple WS2812 LED on GPIO28
precompiled PIO-program, with Forth demo
program using tasker & special functions

CARS\ Highway simulation on a string of WS2812
leds (runs in the multitasker!)

DHT22\ DHT22 moisture and temperature sensor

